Computational discovery of transcriptional regulatory rules
نویسندگان
چکیده
MOTIVATION Even in a simple organism like yeast Saccharomyces cerevisiae, transcription is an extremely complex process. The expression of sets of genes can be turned on or off by the binding of specific transcription factors to the promoter regions of genes. Experimental and computational approaches have been proposed to establish mappings of DNA-binding locations of transcription factors. However, although location data obtained from experimental methods are noisy owing to imperfections in the measuring methods, computational approaches suffer from over-prediction problems owing to the short length of the sequence motifs bound by the transcription factors. Also, these interactions are usually environment-dependent: many regulators only bind to the promoter region of genes under specific environmental conditions. Even more, the presence of regulators at a promoter region indicates binding but not necessarily function: the regulator may act positively, negatively or not act at all. Therefore, identifying true and functional interactions between transcription factors and genes in specific environment conditions and describing the relationship between them are still open problems. RESULTS We developed a method that combines expression data with genomic location information to discover (1) relevant transcription factors from the set of potential transcription factors of a target gene; and (2) the relationship between the expression behavior of a target gene and that of its relevant transcription factors. Our method is based on rule induction, a machine learning technique that can efficiently deal with noisy domains. When applied to genomic location data with a confidence criterion relaxed to P-value = 0.005, and three different expression datasets of yeast S.cerevisiae, we obtained a set of regulatory rules describing the relationship between the expression behavior of a specific target gene and that of its relevant transcription factors. The resulting rules provide strong evidence of true positive gene-regulator interactions, as well as of protein-protein interactions that could serve to identify transcription complexes. AVAILABILITY Supplementary files are available from http://www.jaist.ac.jp/~h-pham/regulatory-rules
منابع مشابه
Title: Discovery and Characterization of Human Exonic Transcriptional Regulatory Elements Discovery and Characterization of Human Exonic Transcriptional Regulatory Elements Table of Contents
Copyright Information: All rights reserved unless otherwise indicated. Contact the author or original publisher for any necessary permissions. eScholarship is not the copyright owner for deposited works. Learn more at 2012 ii ABSTRACT OF THE DISSERTATION Discovery and characterization of human exonic transcriptional regulatory elements We sought regulatory elements by shotgun cloning human exon...
متن کاملPractical Strategies for Discovering Regulatory DNA Sequence Motifs
Many functionally important regions of the genome can be recognized by searching for sequence patterns, or ‘‘motifs.’’ Aside from the genes themselves, examples include CpG islands, often present in promoter regions, and splice sites that denote intron/exon boundaries. Other motifs of great interest correspond to sites bound by regulatory proteins. Differential expression of genes in response t...
متن کاملComputational identification of transcriptional regulatory elements in DNA sequence
Identification and annotation of all the functional elements in the genome, including genes and the regulatory sequences, is a fundamental challenge in genomics and computational biology. Since regulatory elements are frequently short and variable, their identification and discovery using computational algorithms is difficult. However, significant advances have been made in the computational me...
متن کاملA New Algorithm for Identifying Cis-Regulatory Modules Based on Hidden Markov Model
The discovery of cis-regulatory modules (CRMs) is the key to understanding mechanisms of transcription regulation. Since CRMs have specific regulatory structures that are the basis for the regulation of gene expression, how to model the regulatory structure of CRMs has a considerable impact on the performance of CRM identification. The paper proposes a CRM discovery algorithm called ComSPS. Com...
متن کاملBayCis: A Bayesian Hierarchical HMM for Cis-Regulatory Module Decoding in Metazoan Genomes
The transcriptional regulatory sequences in metazoan genomes often consist of multiple cis-regulatory modules (CRMs). Each CRM contains locally enriched occurrences of binding sites (motifs) for a certain array of regulatory proteins, capable of integrating, amplifying or attenuating multiple regulatory signals via combinatorial interaction with these proteins. The architecture of CRM organizat...
متن کاملComparative Analysis of Regulatory Motif Discovery Tools for Transcription Factor Binding Sites
In the post-genomic era, identification of specific regulatory motifs or transcription factor binding sites (TFBSs) in non-coding DNA sequences, which is essential to elucidate transcriptional regulatory networks, has emerged as an obstacle that frustrates many researchers. Consequently, numerous motif discovery tools and correlated databases have been applied to solving this problem. However, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 21 Suppl 2 شماره
صفحات -
تاریخ انتشار 2005